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2 Technical accomplishments
Granular energetic materials exhibit com-

Friction
dissipation

Heat particle
diffusion

Force
Chain

Stress
wave

Figure 1: Interaction between granular dissipation
due to friction, stress waves and heat diffusion.

plex chaotic behavior due to the coexistence
of a wide range of energy scales without
scale separation. The main challenges in-
volved in modeling the physical processes
leading to initiation of explosive reactions
are (i) the lack of a general model for het-
erogeneous granular media under compac-
tion and (ii) the lack of a reliable multi-
scale discrete-to-continuum framework for
describing diffusion-advection-reaction pro-
cesses in complex particulate media. Most
conventional methods for studying visco-
plastic deformations of granular media un-
der shear and compression in ideal condi-
tions overlook the effect of spatial hetero-
geneity in granular structure. This heterogeneity is believed to play a major role in stress and
heat localization events responsible for initiating reactions in energetic materials. In particu-
lar, it has been observed that so-called “hot-spots” emerge as a consequence of visco-plastic
pore collapse, inter-granular friction, and granular compaction. The wide range in stress,
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strain, and dissipation found in energetic materials magnify the multiscale behavior of the
system. That is, microscopic events invariably affect the macroscopic behavior of the sys-
tem and cannot be neglected, yet are also impossible to predict deterministically. Specifically,
macroscopic stress boundary conditions induce heterogeneous deformations at the grain level
which causes friction and grain deformations at the microscopic level. This generates thermal
fluctuations and chemical reactions at the molecular level, which in turn builds up a shock
wave whose power is several orders of magnitude higher than the initial conditions.

During the two years of this project we investigated two of the processes in Figure 1:
multiscale diffusion / heat transfer and multiscale dynamics of granular materials.

2.1 Hybrid Discrete-Continuum Models of Heat Dissipation
Efficient coupling of continuum (deterministic or stochastic) constitutive solvers with their
discrete (stochastic, particle-based) counterparts is a common challenge in hybrid and mul-
tiphysics simulations. We [Bakarji and Tartakovsky, 2016] studied interfacial, tightly cou-
pled simulations of diffusion that combine continuum and particle-based solvers. The latter
employed the reverse Brownian motion (rBm), a Monte Carlo approach that allows one to
enforce inhomogeneous Dirichlet, Neumann, or Robin boundary conditions and is trivially
parallelizable. In Brownian motion, a particle’s trajectory X(t) evolves in time according to
a stochastic differential equation dX(t) =

√
2αd dW(t) where αd is a diffusion coefficient,

and dW(t) ∼ N (0, dt) is a d-dimensional Wiener process. Our Monte Carlo simulations
used the rBm implementation, in which individual trajectories of NMC particles released at
point x at time t satisfy X(t −∆td) = X(t) − √2αd N (0,∆td). Given an initial condition
uin(x), and the functions uD(x, t) and JN(x, t) prescribed respectively on the Dirichlet and
Neumann boundary conditions, the sample mean temperature ûd(x, t) at space-time point
(x, t) is computed as a weighted sum

ûd(x, t) =
Nin

NMC
Sin +

ND

NMC
SD +

NN

NMC
SN (1)

of sample averages of the initial and boundary functions, uin[Xi(0)], uD[Xi(t − Ti), t − Ti]
and JN[Xi(t− Ti,j), t− Ti,j]. Here Nin, ND and NN are the numbers of particles that reached
the initial state and the boundaries, respectively; and Ti is the ith particle’s exit time.

We developed a number of numerical approaches for improving the accuracy of rBm
in the presence of inhomogeneous Neumann boundary condition and alternative strategies
for coupling the rBm solver with its continuum counterpart. Numerical experiments were
used to investigate the convergence, stability, and computational efficiency of the proposed
hybrid algorithm. Our analysis revealed that the use of Monte Carlo simulations based on the
reverse Brownian motion (rBm) in the context of discrete-to-continuum hybrid simulations
has a number of advantages. These include

1. the ability to use very large hybrid time step ∆th without compromising accuracy,

2. the ability to compute the solution only near the boundaries to ensure the continuity of
the flux in the hybrid method,
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3. the ability to use the continuum domain as a deterministic source of Dirichlet, Neumann
and initial boundary conditions for the rBm, and therefore

4. a controllable loss of accuracy given a flexible choice of NMC at every location in the
particle domain.

Our hybrid algorithm is easy to implement in any number of dimensions. Furthermore, ex-
tending the hybrid model to advection-diffusion equations is relatively straightforward.

2.2 Hybrid Discrete-Continuum Models of Compaction of Granular Ma-
terials

Given a force applied to the top of a cylinder filled with monodisperse granular medium
with spherical metal beads (Figure 2), find the height of the top lid h(t) as a function of
time. The particles are assumed to be formed of a deformable and incompressible metal
(e.g., aluminum). The pressure P on the top is assumed to be constant. It is expected that
the presence of a large pore will induce more compactions, i.e., hpore < hhom. We estimated
the height of the lid in the presence of a macro-pore as compared to the case without macro-
pores. More specifically, we studied the effects of heterogeneity by using a local model for
pore collapse in a granular medium.

(a) Actual Setup

Applied Pressure

Coupling
Pressure

Macropore

Skorokhod-
Olevsky
Model

Carroll-Holt
Model

(b) Hybrid Coupling

Figure 1: Actual to Hybrid Model

1.2 Problem Statement

Given a cylinder filled with monodisperse granular medium with spherical metal beads,
as shown in figure 1a, what is the height of the top lid h(t) as a function of time. The
particles are assumed to be formed of a deformable and incompressible metal (e.g.
aluminum). The pressure P on the top is assumed to be constant, independent of
time. It is expected that the presence of a large pore will induce more compactions, i.e.
hmacropore < hhomogeneous. We want to estimate the height of the lid in the presence
of a macro-pore as compared to the case without macro-pores. In other words, we
want to study the e↵ect of heterogeneities by using a local model for pore collapse in
a granular medium.

2 Preliminary Models

2.1 The Carroll-Holt Model

The Carroll-Holt (CH) model is an axisymmetric elasto-plastic model of the collapse
of an incompressible metallic shell [? ? ]. The modified CH model introduces a
restriction on the extent to which the pore can collapse, avoiding singularity at its
center. While using this model, the coupling has to be done in such a way to transform
the compressible shell of the actual case into an incompressible shell. Given a pressure
PCH at the surface of the shell, its inner radius a and outer radius b according to the
porosity a2

b2
, we have

PCH(t) =2

Z b

a


Y1

✓
1 � T

Tm

◆
� 6⌘me

B
⇣

1
T
� 1

Tm

⌘
ṙ

r

�
dr

r

� ⇢s


(aä + 2a2)(1 � a

b
) � 1

2
a2

✓
1 �

⇣a

b

⌘4
◆�

where PCH(t) is the externally applied pressure, Y1 the yield strength of the shell,
Tm the melting temperature, ⇢s the density of the solid shell, T the temperature, r the

2

Figure 2: A physical system (left) and its hybrid model (right).

A discrete representation of a granular material’s dynamics was based on the Carroll-Holt
(CH) model, which is an axisymmetric elasto-plastic model of the collapse of an incompress-
ible metallic shell. We used the modified CH model that introduces a restriction on the extent
to which the pore can collapse, avoiding singularity at its center. While using this model, the
coupling has to be done in a way that transforms the compressible shell of the actual case
into an incompressible shell.
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(a) Coupling Algorithm
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�t
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redistribution

(b) Power Redistribution

Figure 2: Coupling

Subtracting both equation, and defining the stress power di↵erence �Pp̄ = P+
p̄ � P�

p̄

we have

�Pp̄ � P�
p =

Z

@⌦+

t · v+da �
Z

@⌦�
t · v�da =

Z

@⌦�
t · (v+ � v�)da (9)

Indicating that the di↵erence in displacement of the boundary depends on the known
value P�

p and the stress power di↵erence �Pp̄. In our case, this reduces to

�Pp̄ � P�
p =

PL

�t
(h+ � h�) (10)

3.2 Energy-conserving Hybrid Method

As summarized in fig. 2a, the step by step coupling algorithm is as follows

1. At a given time t, we know the actual height of the lid h+(t), the confining
pressure P and the total porosity ✓(t) (assumed to be uniform). Using the Cauchy
equation along with the Skorokhod constitutive law in the homogeneous case
without macro-pore, we compute the velocity field u�

i (t+�t), porosity ✓�(t+�t),
height h�(t + �t), the strain tensor ¯̄✏(x, t) and the stress tensor ¯̄�(x, t).

(a) Given the radius of the macro-pore rp(t) and its position Cp(t), we can
compute the ”stress power” in the pore domain ⌦�

p in the case without
macro-pore: P�

p =
R
⌦p

¯̄✏ · ¯̄�dV , keeping in mind that P+
p = 0.

(b) Given the strain tensor ¯̄✏ we can compute the shrinkage of the virtual volume
in ⌦� where the pore is supposed to be ||⌦�

p ||(t + �t)

2. Guess PCH(t) and choose b(t), the outer radius of the shell in the Carroll-Holt
model

(a) Compute rp(t + �t) and ||⌦+
p || = ⇡r2

p(t + �t), by solving the CH model for
t + �t

(b) Assuming that the porosity away from the pore is the same in ⌦+ \ ⌦p and
⌦� \ ⌦p for a short time �t, the di↵erence in the height of the lid between
the case with and without macro pores is given by

�h = h�(t + �t) � h+(t + �t) =
1

L

�
||⌦�

p || � ||⌦+
p ||

�
(11)

where L is the width of the piston.
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Figure 3: Coupling algorithm for hybrid simulations.

We used the non-linear viscous model of Skorokhod and Olevsky as a continuum (macro-
scopic) description of granular compaction. The model posits that stress (σij) depends on
strain rate (ε̇ij), and that bulk (ψ) and shear (φ) moduli depend on porosity (θ):

σij =
σ(W )

W

[
φ(θ)ε̇ij +

(
φ(θ)− 1

3
ψ(θ)

)
ėδij

]
, ė ≡ ∂ui

∂xi
(2)

where δij is the Kronecker delta function; and

φ = φs(1− θ)2 ψ =
2

3
ψs

(1− θ)3
θ

(3)

In the linear-viscous case, σ(W ) = η0W ; in the perfectly plastic case, σ(W ) = σy where
W =

√
(1− θ)/[φ(θ)γ̇2 + ψ(θ)ė2] and γ̇ =

√
ε̇′ε̇′. The continuity equation reduces to ė =

θ̇/(1− θ). These constitutive equations were then used in the Cauchy equation of motion.
These two levels of description were combined in a globally energy-conserving hybrid

model, whose schematic representation is provided in Figure 3.

(c) Given ¯̄✏CH(x, t) and ¯̄�CH(x, t), we compute the stress power in the shell
around the pore by assuming that

P+
⌦\⌦p

� P�
⌦\⌦p

= �Pp̄ = PCH =

Z

⌦CH

¯̄✏CH · ¯̄�CHdV (12)

(d) Using conservation of energy, derived above, we minimize the following cost
function

J(PCH) =

����
�����Pp̄ �


P�

p +
PL

�t
�h

�����
���� (13)

3. Minimize J iteratively by repeating step 2 until J is minimized, after which we
can compute h+(t + �t) = h�(t + �t) ��h.

4 Preliminary Results

First we explore a limiting case in which the matrix is incompressible. In that case,
compression is only due to the macro-pores and the stress distribution around the pores
can be deduced by assuming the pores to be in an infinite medium (compared to the
whole domain). Fig. 3a shows the combined e↵ect of multiple macro-pores using a
simple superposition of Carroll-Holt models with di↵erent radii and surface stresses.
This gives us an idea on what to expect in the di↵erence between a homogeneous and
heterogeneous compaction.
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Figure 3: Results

Assuming a linear-viscous continuum model for the matrix, we explore the depen-
dence of the height of the lid h(t) as a function of viscosity. Fig. 3b shows a range of
viscosity of one order of magnitude.

5 Conclusion and Future Work

We have developed a hybrid method that uses the homogeneous solution as an input
to compute a heterogeneous solution via conservation of energy. Future work will focus

6

Figure 4: (a) Changes in porosity predicted with a superposition of Carroll-Holt solutions.
(b) Piston’s position computed with the hybrid model.

This hybrid model was first used to simulate compaction of a granular material with
incompressible matrix. In this case, compression is only due to the macropores and the

5



stress distribution around the pores can be deduced by assuming the pores to be in an infinite
medium (compared to the whole domain). Figure 4a shows the combined effect of multiple
macropores using a superposition of Carroll-Holt models with different radii and surface
stresses. This gives an idea on what to expect in the difference between a homogeneous and
heterogeneous compaction.

Assuming a linear-viscous continuum model for the matrix, we explored the dependence
of the height of the lid h(t) as a function of viscosity. Figure 4b shows a range of viscosity
of one order of magnitude.

2.3 Fluctuating Macroscopic Models
Inspired by fluctuating Navier-Stokes equations of hydrodynamics, we explored ways to
model unresolved micro-scales, e.g., heterogeneity due to macropores, as a random source in
the Cauchy equation of motion,

ρ
Du

Dt
= ∇ · σ + Ipf(x, t) (4)

where ρ is the density, u is the velocity at point x and time t, and the stress tensor σ is
related to the strain rate ε̇ by a constitutive law, e.g., by the Skorokhod-Olevsky relation (2).
The (possibly random) indicator function Ip(x) for a macropore region Ωp(t) is defined as
Ip = 1 if x ∈ Ωp and = 0 otherwise. The macropore region Ωp(t) is a multi-connected
domain comprising multiple macropores, which can be randomly distributed throughout the
material. The random source vector f(x, t) is treated as zero-mean white noise, E[f(x, t)] =
0, E[fi(x, t) fi(y, τ)] = v2i δ(x−y)δ(t− τ) where v2i is the variance of the ith component of
the noise and δ(·) is the Dirac delta function. Figure 5 exhibits an average velocity distribution
within the granular material undergoing slow compaction, for the case of a single macropore
and given noise strength v2i .

Applied Pressure

Figure 5: Average velocity distribution within the granular material undergoing compaction.

Our still elusive goal is to relate the variance v2i to material properties, e.g., grain-size
distribution, via the fluctuation-dissipation theorem.
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